Source code for chainerrl.agents.dqn

from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import *  # NOQA
from future import standard_library
standard_library.install_aliases()

import copy
from logging import getLogger

import chainer
from chainer import cuda
import chainer.functions as F

from chainerrl import agent
from chainerrl.misc.batch_states import batch_states
from chainerrl.misc.copy_param import synchronize_parameters
from chainerrl.recurrent import Recurrent
from chainerrl.recurrent import state_reset
from chainerrl.replay_buffer import batch_experiences
from chainerrl.replay_buffer import ReplayUpdater


def _to_device(obj, gpu):
    if isinstance(obj, tuple):
        return tuple(_to_device(x, gpu) for x in obj)
    else:
        if gpu >= 0:
            return cuda.to_gpu(obj, gpu)
        else:
            return cuda.to_cpu(obj)


def compute_value_loss(y, t, clip_delta=True, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        y (Variable or ndarray): Predicted values.
        t (Variable or ndarray): Target values.
        clip_delta (bool): Use the Huber loss function if set True.
        batch_accumulator (str): 'mean' or 'sum'. 'mean' will use the mean of
            the loss values in a batch. 'sum' will use the sum.
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')
    y = F.reshape(y, (-1, 1))
    t = F.reshape(t, (-1, 1))
    if clip_delta:
        loss_sum = F.sum(F.huber_loss(y, t, delta=1.0))
        if batch_accumulator == 'mean':
            loss = loss_sum / y.shape[0]
        elif batch_accumulator == 'sum':
            loss = loss_sum
    else:
        loss_mean = F.mean_squared_error(y, t) / 2
        if batch_accumulator == 'mean':
            loss = loss_mean
        elif batch_accumulator == 'sum':
            loss = loss_mean * y.shape[0]
    return loss


def compute_weighted_value_loss(y, t, weights,
                                clip_delta=True, batch_accumulator='mean'):
    """Compute a loss for value prediction problem.

    Args:
        y (Variable or ndarray): Predicted values.
        t (Variable or ndarray): Target values.
        weights (ndarray): Weights for y, t.
        clip_delta (bool): Use the Huber loss function if set True.
        batch_accumulator (str): 'mean' will devide loss by batchsize
    Returns:
        (Variable) scalar loss
    """
    assert batch_accumulator in ('mean', 'sum')
    y = F.reshape(y, (-1, 1))
    t = F.reshape(t, (-1, 1))
    if clip_delta:
        losses = F.huber_loss(y, t, delta=1.0)
    else:
        losses = F.square(y - t) / 2
    losses = F.reshape(losses, (-1,))
    loss_sum = F.sum(losses * weights)
    if batch_accumulator == 'mean':
        loss = loss_sum / y.shape[0]
    elif batch_accumulator == 'sum':
        loss = loss_sum
    return loss


[docs]class DQN(agent.AttributeSavingMixin, agent.Agent): """Deep Q-Network algorithm. Args: q_function (StateQFunction): Q-function optimizer (Optimizer): Optimizer that is already setup replay_buffer (ReplayBuffer): Replay buffer gamma (float): Discount factor explorer (Explorer): Explorer that specifies an exploration strategy. gpu (int): GPU device id if not None nor negative. replay_start_size (int): if the replay buffer's size is less than replay_start_size, skip update minibatch_size (int): Minibatch size update_interval (int): Model update interval in step target_update_interval (int): Target model update interval in step clip_delta (bool): Clip delta if set True phi (callable): Feature extractor applied to observations target_update_method (str): 'hard' or 'soft'. soft_update_tau (float): Tau of soft target update. n_times_update (int): Number of repetition of update average_q_decay (float): Decay rate of average Q, only used for recording statistics average_loss_decay (float): Decay rate of average loss, only used for recording statistics batch_accumulator (str): 'mean' or 'sum' episodic_update (bool): Use full episodes for update if set True episodic_update_len (int or None): Subsequences of this length are used for update if set int and episodic_update=True logger (Logger): Logger used batch_states (callable): method which makes a batch of observations. default is `chainerrl.misc.batch_states.batch_states` """ saved_attributes = ('model', 'target_model', 'optimizer') def __init__(self, q_function, optimizer, replay_buffer, gamma, explorer, gpu=None, replay_start_size=50000, minibatch_size=32, update_interval=1, target_update_interval=10000, clip_delta=True, phi=lambda x: x, target_update_method='hard', soft_update_tau=1e-2, n_times_update=1, average_q_decay=0.999, average_loss_decay=0.99, batch_accumulator='mean', episodic_update=False, episodic_update_len=None, logger=getLogger(__name__), batch_states=batch_states): self.model = q_function self.q_function = q_function # For backward compatibility if gpu is not None and gpu >= 0: cuda.get_device(gpu).use() self.model.to_gpu(device=gpu) self.xp = self.model.xp self.replay_buffer = replay_buffer self.optimizer = optimizer self.gamma = gamma self.explorer = explorer self.gpu = gpu self.target_update_interval = target_update_interval self.clip_delta = clip_delta self.phi = phi self.target_update_method = target_update_method self.soft_update_tau = soft_update_tau self.batch_accumulator = batch_accumulator assert batch_accumulator in ('mean', 'sum') self.logger = logger self.batch_states = batch_states if episodic_update: update_func = self.update_from_episodes else: update_func = self.update self.replay_updater = ReplayUpdater( replay_buffer=replay_buffer, update_func=update_func, batchsize=minibatch_size, episodic_update=episodic_update, episodic_update_len=episodic_update_len, n_times_update=n_times_update, replay_start_size=replay_start_size, update_interval=update_interval, ) self.t = 0 self.last_state = None self.last_action = None self.target_model = None self.sync_target_network() # For backward compatibility self.target_q_function = self.target_model self.average_q = 0 self.average_q_decay = average_q_decay self.average_loss = 0 self.average_loss_decay = average_loss_decay def sync_target_network(self): """Synchronize target network with current network.""" if self.target_model is None: self.target_model = copy.deepcopy(self.model) call_orig = self.target_model.__call__ def call_test(self_, x): with chainer.using_config('train', False): return call_orig(self_, x) self.target_model.__call__ = call_test else: synchronize_parameters( src=self.model, dst=self.target_model, method=self.target_update_method, tau=self.soft_update_tau) def update(self, experiences, errors_out=None): """Update the model from experiences This function is thread-safe. Args: experiences (list): list of dict that contains state: cupy.ndarray or numpy.ndarray action: int [0, n_action_types) reward: float32 next_state: cupy.ndarray or numpy.ndarray next_legal_actions: list of booleans; True means legal gamma (float): discount factor Returns: None """ has_weight = 'weight' in experiences[0] exp_batch = batch_experiences(experiences, xp=self.xp, phi=self.phi, batch_states=self.batch_states) if has_weight: exp_batch['weights'] = self.xp.asarray( [elem['weight'] for elem in experiences], dtype=self.xp.float32) if errors_out is None: errors_out = [] loss = self._compute_loss( exp_batch, self.gamma, errors_out=errors_out) if has_weight: self.replay_buffer.update_errors(errors_out) # Update stats self.average_loss *= self.average_loss_decay self.average_loss += (1 - self.average_loss_decay) * float(loss.data) self.model.cleargrads() loss.backward() self.optimizer.update() def input_initial_batch_to_target_model(self, batch): self.target_model(batch['state']) def update_from_episodes(self, episodes, errors_out=None): has_weights = isinstance(episodes, tuple) if has_weights: episodes, weights = episodes if errors_out is None: errors_out = [] if errors_out is None: errors_out_step = None else: del errors_out[:] for _ in episodes: errors_out.append(0.0) errors_out_step = [] with state_reset(self.model): with state_reset(self.target_model): loss = 0 tmp = list(reversed(sorted( enumerate(episodes), key=lambda x: len(x[1])))) sorted_episodes = [elem[1] for elem in tmp] indices = [elem[0] for elem in tmp] # argsort max_epi_len = len(sorted_episodes[0]) for i in range(max_epi_len): transitions = [] weights_step = [] for ep, index in zip(sorted_episodes, indices): if len(ep) <= i: break transitions.append(ep[i]) if has_weights: weights_step.append(weights[index]) batch = batch_experiences(transitions, xp=self.xp, phi=self.phi, batch_states=self.batch_states) if i == 0: self.input_initial_batch_to_target_model(batch) if has_weights: batch['weights'] = self.xp.asarray( weights_step, dtype=self.xp.float32) loss += self._compute_loss(batch, self.gamma, errors_out=errors_out_step) if errors_out is not None: for err, index in zip(errors_out_step, indices): errors_out[index] += err loss /= max_epi_len # Update stats self.average_loss *= self.average_loss_decay self.average_loss += \ (1 - self.average_loss_decay) * float(loss.data) self.model.cleargrads() loss.backward() self.optimizer.update() if has_weights: self.replay_buffer.update_errors(errors_out) def _compute_target_values(self, exp_batch, gamma): batch_next_state = exp_batch['next_state'] target_next_qout = self.target_model(batch_next_state) next_q_max = target_next_qout.max batch_rewards = exp_batch['reward'] batch_terminal = exp_batch['is_state_terminal'] return batch_rewards + self.gamma * (1.0 - batch_terminal) * next_q_max def _compute_y_and_t(self, exp_batch, gamma): batch_size = exp_batch['reward'].shape[0] # Compute Q-values for current states batch_state = exp_batch['state'] qout = self.model(batch_state) batch_actions = exp_batch['action'] batch_q = F.reshape(qout.evaluate_actions( batch_actions), (batch_size, 1)) with chainer.no_backprop_mode(): batch_q_target = F.reshape( self._compute_target_values(exp_batch, gamma), (batch_size, 1)) return batch_q, batch_q_target def _compute_loss(self, exp_batch, gamma, errors_out=None): """Compute the Q-learning loss for a batch of experiences Args: experiences (list): see update()'s docstring gamma (float): discount factor Returns: loss """ y, t = self._compute_y_and_t(exp_batch, gamma) if errors_out is not None: del errors_out[:] delta = F.sum(abs(y - t), axis=1) delta = cuda.to_cpu(delta.data) for e in delta: errors_out.append(e) if 'weights' in exp_batch: return compute_weighted_value_loss( y, t, exp_batch['weights'], clip_delta=self.clip_delta, batch_accumulator=self.batch_accumulator) else: return compute_value_loss(y, t, clip_delta=self.clip_delta, batch_accumulator=self.batch_accumulator) def compute_q_values(self, states): """Compute Q-values Args: states (list of cupy.ndarray or numpy.ndarray) Returns: list of numpy.ndarray """ with chainer.using_config('train', False): if not states: return [] batch_x = self.batch_states(states, self.xp, self.phi) q_values = list(cuda.to_cpu( self.model(batch_x).q_values)) return q_values def _to_my_device(self, model): if self.gpu >= 0: model.to_gpu(self.gpu) else: model.to_cpu() def act(self, state): with chainer.using_config('train', False): with chainer.no_backprop_mode(): action_value = self.model( self.batch_states([state], self.xp, self.phi)) q = float(action_value.max.data) action = cuda.to_cpu(action_value.greedy_actions.data)[0] # Update stats self.average_q *= self.average_q_decay self.average_q += (1 - self.average_q_decay) * q self.logger.debug('t:%s q:%s action_value:%s', self.t, q, action_value) return action def act_and_train(self, state, reward): with chainer.using_config('train', False): with chainer.no_backprop_mode(): action_value = self.model( self.batch_states([state], self.xp, self.phi)) q = float(action_value.max.data) greedy_action = cuda.to_cpu(action_value.greedy_actions.data)[ 0] # Update stats self.average_q *= self.average_q_decay self.average_q += (1 - self.average_q_decay) * q self.logger.debug('t:%s q:%s action_value:%s', self.t, q, action_value) action = self.explorer.select_action( self.t, lambda: greedy_action, action_value=action_value) self.t += 1 # Update the target network if self.t % self.target_update_interval == 0: self.sync_target_network() if self.last_state is not None: assert self.last_action is not None # Add a transition to the replay buffer self.replay_buffer.append( state=self.last_state, action=self.last_action, reward=reward, next_state=state, next_action=action, is_state_terminal=False) self.last_state = state self.last_action = action self.replay_updater.update_if_necessary(self.t) self.logger.debug('t:%s r:%s a:%s', self.t, reward, action) return self.last_action def stop_episode_and_train(self, state, reward, done=False): """Observe a terminal state and a reward. This function must be called once when an episode terminates. """ assert self.last_state is not None assert self.last_action is not None # Add a transition to the replay buffer self.replay_buffer.append( state=self.last_state, action=self.last_action, reward=reward, next_state=state, next_action=self.last_action, is_state_terminal=done) self.stop_episode() def stop_episode(self): self.last_state = None self.last_action = None if isinstance(self.model, Recurrent): self.model.reset_state() self.replay_buffer.stop_current_episode() def get_statistics(self): return [ ('average_q', self.average_q), ('average_loss', self.average_loss), ]